Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309603

RESUMO

Naphthalene, the most abundant polycyclic aromatic hydrocarbon in the atmosphere, significantly influences OH consumption and secondary organic aerosol (SOA) formation. Naphthoquinone (NQ) is a significant contributor to ring-retaining SOA from naphthalene degradation, impacting the redox properties and toxicity of ambient particles. However, inconsistencies persist regarding concentrations of its isomers, 1,2-NQ and 1,4-NQ. In present work, our theoretical investigation into naphthalene's reaction with OH and subsequent oxygenation unveils their role in SOA formation. The reaction kinetics of initial OH and subsequent O2 oxidation was extensively studied using high-level quantum chemical methods (DLPNO-CCSD(T)/aug-ccpVQZ//M052x-D3/6-311++G(d,p)) combined with RRKM/master equation simulations. The reactions mainly proceed through electrophilic addition and abstraction from the aromatic ring. The total rate coefficient of naphthalene + OH at 300 K and 1 atm from our calculation (7.2 × 10-12 cm3 molecule-1 s-1) agrees well with previous measurements (∼1 × 10-11 cm3 molecule-1 s-1). The computed branching ratios facilitate accurate product yield determination. The largest yield of 1-hydroxynaphthalen-1-yl radical (add1) producing the major precursor of RO2 is computed to be 93.8 % in the ambient environment. Our calculated total rate coefficient (5.2 × 10-16 cm3 molecule-1 s-1) for add1 + O2 closely matches that of limited experimental data (8.0 × 10-16 cm3 molecule-1 s-1). Peroxy radicals (RO2) generated from add1 + O2 include 4-cis/trans-(1-hydroxynaphthalen-1-yl)-peroxy radical (add1-4OOadd-cis/trans, 66.0 %/17.5 %), 2-cis/trans-(1-hydroxynaphthalen-1-yl)-peroxy radical (add1-2OOadd-cis/trans, 10.3 %/6.3 %). Regarding the debated predominance of 1,4-NQ (corresponding to the parent RO2, i.e., add1-4OOadd-cis/trans) and 1,2-NQ (corresponding to the parent RO2, i.e., add1-2OOadd-cis/trans) in the atmosphere, our findings substantiate the dominance of 1,4-NQ. This study also indicates potential weakening of 1,4-NQ's dominance due to competition from decomposition reactions of add1-4OOadd-cis/trans and add1-2OOadd-cis/trans. Precise reaction kinetics data are essential for characterizing SOA transformation derived from naphthalene and assessing their climatic impacts within modeling frameworks.


Assuntos
Naftoquinonas , Hidrocarbonetos Policíclicos Aromáticos , Naftalenos/química , Física , Cinética , Oxirredução
2.
Sensors (Basel) ; 23(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679835

RESUMO

Aimed at the poor recognition effect of current educational robots on objects with complex shapes and colors and the single design of related experiments, this paper proposes a robot teaching instrument. The robot adopts a servo motor with an encoder, a drive, and a variety of sensors to realize a motor current loop, speed loop, position loop, and closed-loop control functions. Three experimental schemes were designed: a PID adjustment experiment, a robot obstacle avoidance and object-grasping program writing experiment, and a complex object recognition experiment based on cascade classifiers. The robot is conducive to improving students' self-initiative ability, deepening their understanding of PID closed-loop control, multi-sensor fusion, and deep learning knowledge. It can improve students' programming ability, enabling them to effectively combine theory and practice, as well as to comprehensively apply professional knowledge.


Assuntos
Robótica , Humanos , Percepção Visual , Estudantes , Reconhecimento Psicológico , Força da Mão
3.
J Phys Chem A ; 127(5): 1283-1292, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36715586

RESUMO

Glycerol trinitrate (NG) and trimethylolethane trinitrate (TMETN), as typical nitrate esters, are important energetic plasticizers in solid propellants. With the aid of high-precision quantum chemical calculations, the Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation theory and the transition state theory have been employed to investigate the decomposition kinetics of NG and TMETN in the gas phase (over the temperature range of 300-1000 K and pressure range of 0.01-100 atm) and liquid phase (using water as the solvent). The continuum solvation model based on solute electron density (SMD) was used to describe the solvent effect. The thermal decomposition mechanism is closely relevant to the combustion properties of energetic materials. The results show that the RO-NO2 dissociation channel overwhelmingly favors other reaction pathways, including HONO elimination for the decomposition of NG and TMETN in both the gas phase and liquid phase. At 500 K and 1 atm, the rate coefficient of gas phase decomposition of TMETN is 5 times higher than that of NG. Nevertheless, the liquid phase decomposition of TMETN is a factor of 5835 slower than that of NG at 500 K. The solvation effect caused by vapor pressure and solubility can be used to justify such contradictions. Our calculations provide detailed mechanistic evidence for the initial kinetics of nitrate ester decomposition in both the gas phase and liquid phase, which is particularly valuable for understanding the multiphase decomposition behavior and building detailed kinetic models for nitrate ester.

4.
J Chem Phys ; 154(24): 244301, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241365

RESUMO

Photoionization cross sections (PICSs) for the products of the reaction from CN with toluene, including benzonitrile and o/m/p-cyanotoluene, were obtained at photon energies ranging from ionization thresholds to 14 eV by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). Theoretical calculations based on the frozen-core Hartree-Fock approximation and Franck-Condon simulations were carried out to cross-verify the measured PICS. The results show that the photoionization cross sections of benzonitrile and cyanotoluene isomers are similar. The generalized charge decomposition analysis was used to investigate the components of the highest occupied molecular orbital (HOMO) and HOMO-1. It was found that the HOMO and HOMO-1 of benzonitrile and cyanotoluene isomers are dominated by the features of the benzene ring, indicating that the substitution of CN and methyl has a minor influence on the PICS of the studied molecules. The reported PICS on benzonitrile and cyanotoluene isomers in the present work could contribute to the near-threshold PIMS experiments and determine the ionization and dissociation rates in interstellar space for these crucial species. The theoretical analysis on characteristics of molecular orbitals provides clues to estimating the PICS of similar substituted aromatic compounds.

5.
Chemosphere ; 282: 131004, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34082313

RESUMO

Reacting with OH provides a major sink for styrene in the atmosphere, with three possible pathways including OH-addition, H-abstraction and addition-dissociation reactions. However, the total rate coefficients of styrene + OH were measured as 1.2-6.2 × 10-11 cm3 molecule-1 s-1 under atmospheric conditions, varying by a maximum factor of 5. On the other hand, only one theoretical work reported this rate coefficient as 19.1 × 10-11 cm3 molecule-1 s-1, which exhibits up to 16 times that measured in laboratory studies. In the present study, the reaction kinetics of styrene + OH was extensively studied with high-level quantum chemical methods combined with RRKM/master equation simulations. In particular, we carried out theoretical treatments for the formation of pre-reaction Van der Waals complexes of styrene + OH, and examined their influence on the reaction kinetics. The total rate coefficient for styrene + OH is calculated to be 1.7 × 10-11 cm3 molecule-1 s-1 at 300 K, 1 atm. The main products are addß (88.2%), add5 (6.9%), addα (1.9%) and add3 (1.7%). Using our computed rate coefficient and the global atmospheric hydroxyl radical concentration (2 × 106 radicals per cm3), the lifetime of styrene in the atmosphere is estimated at 8.0 h. The degradation of styrene might be negligible for the formation of ozone in the atmosphere based upon the photochemical ozone creation potentials calculation. The computed product yields indicate that addß via subsequent reactions could significantly produce formaldehyde and benzaldehyde that were observed in previous experimental studies on styrene oxidation, and contribute to the formation of secondary organic aerosols.


Assuntos
Ozônio , Estireno , Aerossóis , Atmosfera , Radical Hidroxila , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...